National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
The role of autophagy in apoptosis induction by fatty acids in pancreatic beta cells.
Žigová, Ivana ; Němcová, Vlasta (advisor) ; Truksa, Jaroslav (referee)
Type 2 diabetes mellitus represents a metabolic disease reaching epidemic dimensions in the 21st century. Fatty acid-induced apoptosis of pancreatic β-cells significantly contributes to its pathogenesis. Saturated fatty acids (FAs) are strongly cytotoxic for β-cells, whereas unsaturated FAs are well tolerable by β-cells, they are even able to inhibit proapoptotic effects of saturated FAs when co-incubated. According to recent studies, FAs-induced apoptosis in pancreatic β-cells is partly regulated by autophagy, a catabolic process involved in the degradation and recyclation of cell components in lysosomes. The aim of this diploma thesis was to contribute to the clarification of the role of autophagy in FAs-induced apoptosis regulation. We induced apoptosis in human pancreatic β- cell line NES2Y by 1 mM stearic acid (SA) and inhibited it with 0.2 mM oleic acid (OA) co- incubated with SA. We revealed, that the saturated SA used in apoptosis-inducing concentration simultaneously inhibits the autophagic flux in pancreatic NES2Y cell line. When SA is co- incubated with unsaturated OA in concentration sufficient for inhibition of proapoptotic effect of SA, OA is also able to inhibit the block of autophagy induced by the effect of SA. Application of unsaturated OA alone in this concentration did not...
Study of Cellular Toxicity of Representative Nanoparticles in Tissue Cultures.
Filipová, Marcela ; Holada, Karel (advisor) ; Benson, Veronika (referee) ; Hubálek Kalbáčová, Marie (referee)
Safety concerns arising from cytotoxic behavior of nanoparticles (NPs) in complex biological environment remain the main problem limiting NPs application in biomedicine. In this study, we have investigated cytotoxicity of NPs with different composition, shape and size, namely SiO2 NPs (SiNPs, 7-14 nm), superparamagnetic iron oxide NPs (SPIONs, 8 nm) and carboxylated multiwalled carbon nanotubes (CNTCOOHs, diameter: 60-100 nm, length: 1-2 μm). Cytotoxicity was evaluated with newly designed screening assay capable to simultaneously assess activity of cell dehydrogenases, activity of lactate dehydrogenase (LDH) released from cells into environment and number of intact cell nuclei and apoptotic bodies in human umbilical vein endothelial cell (HUVEC) culture growing in the very same well of the 96-well plate. Aforementioned attributes were subsequently utilized to obtain information about cell viability and necrotic and apoptotic aspects of cell death. Results from this "three-in-one" cell death screening (CDS) assay showed that SiNPs and CNTCOOHs evoked pronounced cytotoxic effect demonstrated as decrease of cell viability and development of apoptotic bodies formation. In contrast to this, SPIONs induced only mild cytotoxicity. Moreover, SiNPs impaired cell membrane leading to increased LDH release...
The role of autophagy in apoptosis induction by fatty acids in pancreatic beta cells.
Žigová, Ivana ; Němcová, Vlasta (advisor) ; Truksa, Jaroslav (referee)
Type 2 diabetes mellitus represents a metabolic disease reaching epidemic dimensions in the 21st century. Fatty acid-induced apoptosis of pancreatic β-cells significantly contributes to its pathogenesis. Saturated fatty acids (FAs) are strongly cytotoxic for β-cells, whereas unsaturated FAs are well tolerable by β-cells, they are even able to inhibit proapoptotic effects of saturated FAs when co-incubated. According to recent studies, FAs-induced apoptosis in pancreatic β-cells is partly regulated by autophagy, a catabolic process involved in the degradation and recyclation of cell components in lysosomes. The aim of this diploma thesis was to contribute to the clarification of the role of autophagy in FAs-induced apoptosis regulation. We induced apoptosis in human pancreatic β- cell line NES2Y by 1 mM stearic acid (SA) and inhibited it with 0.2 mM oleic acid (OA) co- incubated with SA. We revealed, that the saturated SA used in apoptosis-inducing concentration simultaneously inhibits the autophagic flux in pancreatic NES2Y cell line. When SA is co- incubated with unsaturated OA in concentration sufficient for inhibition of proapoptotic effect of SA, OA is also able to inhibit the block of autophagy induced by the effect of SA. Application of unsaturated OA alone in this concentration did not...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.